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SUMMARY

This paper presents a new volume of fluid (VOF) advection algorithm, termed the defined donating
region (DDR) scheme. The algorithm uses a linear piecewise method of free surface reconstruction,
coupled to a fully multi-dimensional method of cell boundary flux integration. The performance of the
new scheme has been compared with the performance of a number of alternative schemes using
translation, rotation and shear advection tests. The DDR scheme is shown to be generally more accurate
than linear constant and flux limited schemes, and comparable with an alternative linear piecewise
scheme. The DDR scheme conserves fluid volume rigorously without local redistribution algorithms, and
generates no fluid ‘flotsam’ or other debris, making it ideal in applications where stability of the free
surface interface is paramount. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The volume of fluid (VOF) method is a convenient and powerful tool for modelling fluid flows
that contain a free surface [1]. Under the VOF method, fluid location is recorded using a VOF
function. In a single fluid calculation, this function is defined as unity within fluid regions, and
zero elsewhere. In numerical fluid simulations, where the VOF function is averaged over each
computational cell, the function becomes one in cells containing only fluid, zero in cells
containing no fluid, and between these values in cells that contain a free surface.

The VOF method is capable of modelling flows with complex free surface geometries,
including flows where fluid volumes separate and combine; yet it is remarkably economical in
computational terms, requiring only one mesh sized array for storing the VOF function and an
algorithm to advect the function during each computational time step. The method used to
advect the VOF function is the subject of this work.
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Excellent reviews of past and present VOF advection methods have been given by Rider
and Kothe [2] and Rudman [3], so only a brief overview of some of the methods available
will be given here. As a Lagrangian invariant of the fluid, the VOF function, F, satisfies [4]

(F
(t

+ (V ·9)F=0 (1)

Due to the discrete nature of the VOF function, special techniques must be used to
difference Equation (1).

One such method is the flux-corrected transport (FCT) algorithm developed by Zalesak
[5], which was applied to the process of VOF advection by Rudman [3]. Under the FCT
method, Equation (1) is differenced using a combination of diffusive upwind and dispersive
downwind first-order difference schemes. The dependence on each scheme is chosen so that
the advected solution contains no extrema which were not present in the previous timestep
solution. Rudman [3] demonstrated that the FCT–VOF advection method is not as accu-
rate as modern piecewise linear advection methods.

Most VOF advection algorithms are not derived directly from Equation (1) but are based
on a two-stage process. Firstly, free surface interfaces are ‘reconstructed’ from the VOF
data, so that a geometrical profile is found which approximates the actual free surface
location. Changes in VOF values are then calculated by integrating fluid fluxes over cell
boundaries, using the geometrical profile to indicate the location of fluid regions. These
types of advection algorithms can be loosely classified according to the technique used to
reconstruct the free surfaces in each cell, and by the method used to perform the boundary
flux integrations [2].

VOF advection methods that represent free surface interfaces as lines directed parallel to
one of the grid co-ordinates are known as piecewise constant schemes. The simple line
interface calculation (SLIC) method of Noh and Woodward [6] and the SURFER method
of Lafaurie et al. [7] are examples of piecewise constant schemes.

A variation on the piecewise constant theme is the method used in the SOLA–VOF code
of Nichols et al. [1]. Under the Hirt–Nichols (H–N) scheme, free surface interfaces are
orientated in directions parallel to grid co-ordinates, but are also allowed the greater
freedom of a stair-shaped profile if local VOF distribution conditions permit. Similar
schemes include those developed by Chorin [8] and Barr and Ashurst [9].

The alternative to representing free surface interfaces as lines parallel to one of the grid
co-ordinates is to orientate free surface interfaces in a direction perpendicular to the locally
evaluated VOF gradient. Thus, free surface interfaces within each cell can acquire any
orientation, and the geometrical profile of the fluid can more closely represent the actual
fluid geometry. Such schemes are known as piecewise linear schemes, and include those
developed by Rider and Kothe [2], Debar [10], Youngs [11], Ashgriz and Poo [12], Puckett
et al. [13], and Harvie and Fletcher [17]. These schemes tend to be more complex than their
piecewise constant cousins, but have been shown to be significantly more accurate [2,3].

The method of integration used to determine cell boundary fluxes is also used to classify
VOF advection techniques. Under operator split schemes, boundary fluxes are calculated
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independently in each co-ordinate direction, often with some type of limiter employed to
reduce possible undershoots or overshoots occurring in cell VOF values. In some operator split
schemes, free surfaces are reconstructed between integrations in each of the co-ordinate
directions. The early Youngs [11] algorithm is an example of an operator split scheme.

Multi-dimensional schemes can be more efficient in calculating cell boundary fluxes than
operator split schemes [2]. Under multi-dimensional schemes, cell boundary fluxes are calcu-
lated with a dependence between fluxes calculated in each of the co-ordinate directions. Only
one free surface reconstruction per time step is required by multi-dimensional schemes.
Example multi-dimensional schemes include those developed by Rider and Kothe [2], Puckett
et al. [13], and Harvie and Fletcher [17].

The defined donating region (DDR) scheme, as developed in this study, is a piecewise linear
scheme with cell boundary fluxes integrated using a new multi-dimensional method. While the
scheme shares similarities with existing multi-dimensional schemes, important differences in the
donating region definition used by the DDR scheme ensures that it is unique, possessing its
own individual strengths and weaknesses.

In this paper, we detail the new VOF advection scheme. This is accomplished in three
sections. In the first, the donating regions within each cell are defined; in the second, the free
surface reconstruction method is outlined; and in the last, the multi-dimensional integration
technique is detailed. A comparison of the performance of the DDR algorithm against several
other VOF advection schemes is then given, using for comparison several simple VOF
advection tests.

2. THE DEFINED DONATING REGION ALGORITHM

2.1. Defined donating regions

Under the DDR method, each boundary has associated with it a defined region from which
fluid can cross the boundary, or be donated. The actual fluid flux over the boundary is then
the intersection of the fluid region contained in the cell with the defined donating region. To
conserve fluid volume and to preserve fluid geometries, such a scheme must satisfy two
requirements

1. donating regions for any two boundaries must not overlap, otherwise VOF conservation is
not assured; and

2. donating regions must contain a total volume equal to the volume of fluid and void, which
is fluxed over the associated boundary during the computational time step.

The method used to define a donating region is illustrated in Figure 1. In this Cartesian
example of unit depth, fluid leaves the cell over the right boundary with velocity uR, enters the
cell over the bottom boundary with velocity 6B and leaves the cell over the top boundary with
velocity 6T. Thus, for this example cell, the right and top boundaries are donating boundaries,
which require defined donating regions, while the bottom boundary is an accepting boundary
requiring no defined region within the cell. There is no fluid flow over the left boundary. As
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Figure 1. Variables used to define the donating region within an example cell.

shown in Figure 1, each donating region is defined as a trapezium having two faces parallel,
or in the limiting case of a trapezium with one zero length parallel side, a triangle.

The velocity of each adjacent boundary is used to determine the gradient of each of the
non-parallel trapezium sides. Considering the donating region FBCG attached to the right
donating boundary BC in Figure 1, we note that the adjacent lower boundary DC is an
accepting boundary, and thus requires no donating region in this cell. Consequently, the lower
trapezium boundary GC is parallel to the lower boundary DC. Conversely, the upper donating
boundary AB does require an attached donating region, so the gradient of this trapezium side
FB is set to the inverse ratio of velocities of the two adjacent boundaries. In this case

dy
dx

)
FB

=
6T
uR

(2)

The idea behind this gradient is as follows. Given a uniform flow field throughout the cell
having horizontal and vertical components of uR and 6T respectively, fluid residing on the line
EB would pass through the point B when exiting the cell. Fluid above EB would pass through
the top boundary AB, while fluid below EB would pass through the right boundary BC. Thus,
the line EB defines the intersection of the two donating regions.

Once the gradients of the two non-parallel sides have been set, the position of the internal
parallel side is set to give the donating region volume equal to the total fluid and void flux
through the donating boundary. To locate the trapezium side FG in Figure 1, the volume
VFBCG of the trapezium FBGC must satisfy

VFBCG=
1
2

(YBC+YFG)XGC=uR dy dt (3)

where dy is the height of the cell, dt is the time step and X and Y are lengths in the horizontal
and vertical directions respectively.
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Further examples of donating regions for different combinations of fluid boundary velocities
are given in Figure 2. Case (A) shows a square cell with equal magnitude velocities over each
boundary. The contents of the entire cell is removed within the time step, the lower right half
out the right boundary, the upper left half out the top boundary. Case (B) shows two adjacent
donating boundaries with unequal magnitudes. Three donating boundaries are shown in case
(C). Case (D) shows two opposite donating boundaries of equal magnitude which, as in case
(A), remove the entire contents of the cell within the time step. Case (E) demonstrates the
donating regions in a cell with unequal cell dimensions.

2.2. Stability analysis

A stability analysis of the donating region model is undertaken to provide the maximum stable
time step. The analysis also shows that for any given set of cell boundary velocities satisfying
the discretized continuity equations, and for any rectangular cell dimensions, donating regions
within the cell can be defined.

Figure 2. Example donating regions defined using boundary velocities.
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For stability, the volume of fluid and void entering the cell during a time step must be less
than the volume of the cell, otherwise any geometrical information concerning the orientation
and volume of fluid within the cell becomes meaningless. Representing the total volume of
fluid and void flowing into the cell as Vin, the total volume flowing out as Vout and the total
volume of the cell as Vcell, we have

Vin5Vcell (4)

For conservation of fluid volume, Vin=Vout, and so

Vout5Vcell (5)

Combining Equations (4) and (5) gives

Vin+Vout52Vcell (6)

Noting that the sum of volume inflow and volume outflow is the total volume flow over all
cell boundaries, and using the velocity notation defined in Figure 3 for the illustrated Cartesian
cell

�VT�+ �VR�+ �VB�+ �VL�52Vcell (7)

� �6T� dt
dy

+ �uR� dt
dx

+ �6B� dt
dy

+ �uL� dt
dx
52 (8)

Equation (8) is satisfied at each boundary if the time step satisfies either

Figure 3. Variables used in the stability analysis.
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�ui+1/2�dt5
1
2

min(dxi, dxi+1) (9)

for the x-direction, or equivalently for the y-direction

�6j+1/2�dt5
1
2

min(dyj, dyj+1) (10)

Integer subscripts in these equations imply cell-centred quantities. Subscripts containing an
integer plus or minus a half refer to cell boundary quantities located above or below the
indicated cell respectively.

Equations (9) and (10) are a form of the Courant condition. In cylindrical co-ordinates,
Equation (9) becomes

�ui+1/2�dt5
1

4xi+1/2

min(xi+1/2
2 −xi−1/2

2 , xi+3/2
2 −xi+1/2

2 ) (11)

where x is now the radial co-ordinate, and Equation (10) remains unchanged.
As previously discussed, donating regions must not overlap, and must contain the total VOF

and void that is fluxed over the associated boundary during the time step. To demonstrate that
donating regions can always be defined within a cell, we examine the four possible cases of
donating boundary layout.

2.2.1. One donating boundary. Equations (9)–(11) are equivalent to

�Vboundary�51
2

Vcell (12)

where Vboundary is the total volume flux over any cell boundary. For the case of only one
donating boundary in the cell, as shown in Figure 4(A), Equation (12) shows that the
maximum volume the donating region can have is half the cell volume. Thus, in this trivial
one-dimensional case, the rectangular region EBCF can always be defined.

2.2.2. Two adjacent donating boundaries. We wish to show that given the region boundary
gradient assumption equation (2) and stability criterion equation (12), the donating regions can
always be defined. Examining the example shown in Figure 4(B), where 6T/uR5dy/dx, the
volume of the triangular region is

VABE=
1
2

YAEXAB=
1
2

dxYAE (13)

Employing the gradient assumption equation (2)

dy
dx

)
FB

=
YAE

XAB

=
YAE

dx
=
6T
uR

=
VT

dx dt
·
dy dt
VR

(14)
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Figure 4. Four possible donating boundary layouts.

�
VT

VR

=
YAE

dy
(15)

Substitution into Equation (13) yields

VABE=
1
2

dx dy
VT

VR

=
1
2

Vcell

VT

VR

(16)

Employing the stability criterion equation (12) for the right boundary

VR5
1
2

Vcell (17)

gives

VT5VABE (18)

Further, if the stability assumption is also applied at the top boundary
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VT5
1
2

Vcell (19)

noting that the volume of the trapezium is

VEBCD=
1
2

(YED+YBC)XAB=
1
2

(2dy−YAE)dx (20)

the right volume flux is

VR5VEBCD

� dy2

(2dy−YAE)YAE

�
(21)

The bracketed term of Equation (21) has a maximum value of 1 for real values of YAE, giving

VR5VEBCD (22)

From Equations (18) and (22), the VOF fluxed through each boundary is contained within
each associated region. Thus, provided the fluxes satisfy the stability criterion equation (12),
both donating regions are defined. The choice of boundaries for this example was arbitrary, so
the proof holds for any two adjacent donating boundaries.

2.2.3. Two opposite donating boundaries. This case is an extension of the trivial one-
dimensional, one donating boundary case. As shown in Figure 4(C), provided the stability
criterion equation (12) is met, the rectangular regions AGHD and EDCF can be defined.

2.2.4. Three adjacent donating boundaries. The maximum volumes for the three donating
regions illustrated in Figure 4(D) are

VABE=
1
2

dx(dy−YEF) (23)

VAEFD=
1
2

XDF(dy+YEF) (24)

and

VEBCF=
1
2

(dx−XDF)(dy+YEF) (25)

For the donating regions to be defined, their volumes must be contained within these maxima.
Employing the region boundary gradient assumption equation (2) at EB and AE gives

VT=VR

dx(dy−YEF)
dy(dx−XDF)

(26)
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and

VL=VR

dx(dy−YEF)
dyXDF

(27)

respectively. Combining Equations (26) and (27) for the left volume flux gives

VL=VR

XDF

dx−XDF

(28)

Now, examining the stability criterion equation (12) for the lower boundary

�VB�51
2

Vcell (29)

The lower boundary is the only boundary with fluid entering the cell, so noting that Vin=Vout,
we have

VL+VT+VR5
1
2

Vcell (30)

Combining Equations (25), (26), (28) and (30) gives for the volume flux over the right
boundary

VR5VEBCF
�

2−
YEF

dy
+
�YEF

dy
�2n−1

(31)

Examination of the bracketed denominator on the right shows that it has a minimum of 1.75
for real values of YEF. Thus

VR5VEBCF (32)

Turning to the left region, we have from Equations (24), (28) and (31)

VL5VAEFD
�

2−
YEF

dy
+
�YEF

dy
�2n−1

(33)

� VL5VAEFD (34)

For the top region, we have from Equations (23), (26) and (31)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 151–172



NEW VOF ADVECTION ALGORITHM 161

VT5VAEDÃ
Ã

Ã

Æ

È
1+

1−
�YEF

dy
�2

1−
YEF

dy

Ã
Ã

Ã

Ç

É

−1

(35)

The bracketed term has a minimum of 2 for real values of YEF, so

VT5VAED (36)

Equations (32), (34) and (36) show that donating regions can always be defined within a
three donating boundary cell, provided the stability criterion equation (12) is met. As a cell
cannot possess four donating boundaries, the existence of donating regions for any combina-
tion of donating boundaries has been proven.

In cylindrical co-ordinates, the total boundary fluxes are given by

VT=p(xi
2−xi−1

2 )6T (37)

VB=p(xi
2−xi−1

2 )6B (38)

VR=2pxidyuR (39)

VL=2pxi−1dyuL (40)

and the existence of donating regions proof still applies. A small error in calculating the
donating region geometry and fluid position within cylindrical cells is introduced by assuming
the internal geometry of the cell is Cartesian; however, this error decreases with cell dimensions
and is negligible in all practical cases. This error does not affect VOF conservation.

2.3. Free surface reconstruction

As a piecewise linear scheme, the free surface reconstruction method used by the DDR scheme
is fairly standard. Free surface orientations are evaluated in each cell by calculating the local
gradient of the VOF function. In the present study, two interface gradient methods are
employed.

1. Youngs method [14]. Under this method the VOF gradient is calculated using a simple
difference expression evaluated over a 3×3 cell kernel. Youngs method has been shown to
produce approximately first-order surface reconstructions [2]. The implementation used
here is taken from Reference [4].

2. Puckett method [15]. Under the Puckett method, each interface orientation within each cell
has associated with it an error function. When this error function is minimized, we find the
optimal free surface orientation. The implementation of the Puckett method used here is
taken from Reference [17]. The Puckett method is more computationally expensive than the
Youngs method; however, it has been shown to produce higher-order accuracy free surface
reconstructions [2].

The performances of the two gradient calculation methods are compared in the next section.
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Once the gradients of the interfaces within each cell have been calculated, the position of the
interfaces are set to equate the volume of fluid beneath each interface to the volume of fluid
contained in each cell. Details of the algorithm employed to accomplish this can be found in
Reference [16].

Note that in cylindrical co-ordinates the interface positioning is accomplished using internal
cell volumes calculated in Cartesian co-ordinates. This introduces a small interface gradient
error, but like the cylindrical treatment of the defined donating regions, the error is negligible
for all practical cases and does not affect fluid conservation.

2.4. Integration of the VOF fluxes

The amount of flux donated over each boundary is calculated as the volume intersection
between the defined donating region of the donating cell and the reconstructed position of
fluid within that cell.

In the example of Figure 5, fluid lies within the quadrilateral EGDH. The velocity over
boundary AD is positive, so the boundary has a donating region associated with it, namely the
trapezium ADCB. The VOF fluxed over AD is the intersection between the fluid region EGDH
and the donating region ADCB, the region FGDC. In this example, the amount fluxed is

dFD=
1

2dx dy
(YFC+YGD)XCD (41)

where dx and dy are the cell dimensions.
In Cartesian co-ordinates, the change in the VOF value of the donating cell is calculated

using

FD* =FD−dFD (42)

while the VOF value for the accepting cell is incremented using either

FA* =FA+
dFD dxD

dxA

(43)

Figure 5. An example flux calculation over a right donating boundary.
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in the x-direction, or in the y-direction

FA* =FA+
dFD dyD

dyA

(44)

Here F* are the incremented VOF values, dFD is the calculated VOF loss from the donating
cell, dx and dy are cell dimensions and the subscripts A and D refer to accepting and donating
cells respectively.

In cylindrical co-ordinates, Equation (44) still holds in the y-direction, but in the radial
direction, Equation (43) is replaced by

FA* =FA+dFD

(xD+
2 −xD−

2 )
(xA+

2 −xA−
2 )

(45)

where the previous notation is supplemented by x+ and x−, the positions of the boundaries
on either side of the relevant cell. Equation (42) still holds in both directions.

3. PERFORMANCE OF THE DEFINED DONATING REGION SCHEME

In this section the performance of the DDR scheme is compared against other VOF advection
schemes using a variety of advection tests.

3.1. Translation test— the box

The simplest advection algorithm test involves translating a geometric shape around the
computational domain. Under such a test, the geometric shape should remain intact, and the
total amount of fluid within the region should be conserved. The test examined here, that of
a box being translated by a uniform and constant velocity field, was chosen to highlight some
of the problems existing with the original H–N algorithm.

The two-dimensional Cartesian regions shown in Figure 6 have dimensions of 1×1 m2 and
are composed of 10000 equally sized cells, each 0.01×0.01 m2. A square block of fluid, of
dimensions 0.1×0.1 m2, moves with equal horizontal and vertical velocities of 1 m s−1

towards the top right-hand corner of the computational domain. Figure 6 shows the fluid
position computed using the H–N and DDR algorithms every 0.1 s until 0.7 s. The exact
solution is also shown. The computational time step used in these calculations was 1×10−3

s, yielding a Courant number of 0.1.
As shown in Figure 6, the VOF contours calculated by the H–N algorithm show significant

diffusion of fluid in a direction normal to the velocity of the fluid. While this diffusion tends
to decrease with decreasing time step, the time step used in the example, 1×10−3 s, is
significantly smaller than the maximum time step for stability of 5×10−3s [1].

In comparison, the VOF contours calculated using the DDR method in Figure 6 show that
the DDR algorithm is more accurate in predicting fluid translation. The shape of the box at
the end of the DDR calculations has not ‘flattened’ tangentially to the extent that the H–N
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Figure 6. The translation test box problem results calculated using the H–N algorithm, the DDR
algorithm using the Youngs interface gradient method and the DDR algorithm using the Puckett
interface gradient method. The exact solution is also shown. In each case three VOF contours are shown;

oF, 0.5 and 1−oF, where oF=1×10−6.

test box did, and the total distance moved by the centre of the box is predicted more
accurately. Also, there is no wisp generation evident at the new box corners moving parallel to
the fluid velocity, despite the DDR algorithm not including any wisp suppressing features. It
is not clear from the figures which method of gradient interface calculation produces the more
accurate results.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 151–172
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Despite the improvement, some diffusion of the box shape has still occurred under the DDR
scheme. This is evidenced by rounding of the box corners and some spreading of the box in a
direction normal to the velocity direction. The rounding of the corners is a feature of the finite
grid size and interface reconstruction method used in calculating boundary fluid fluxes—such
rounding is reduced as the mesh size is refined. The minor spreading of the box shape is caused
by the staggered location of the fluid velocity components. This spreading is reduced with a
decrease in the computational time step size, and also with grid refinement.

Table I shows error functions generated during each translation test. The error function is
here defined as

E=
%
i, j

�Fi, j
n −Fi, j

e �

%
i, j

F i, j
e

(46)

where Fn and Fe are the calculated and exact VOF functions at the completion of the test
respectively. As shown, the error function generated by the H–N algorithm is substantially
larger than the error functions generated by the DDR algorithm. The Youngs method of
interface gradient calculation appears to generate a lower error function than the Puckett
method of interface gradient calculation; however, the difference between the two results is
only slight.

Figure 7 shows the total area of fluid within the two-dimensional computational region, as
calculated by the H–N and DDR algorithms, as a function of time. Concerningly, under the
H–N algorithm, this fluid area increases to approximately 130 per cent of the initial amount
by the completion of the test. This shows that the total amount of fluid is not being conserved
by the H–N algorithm, and that Equation (1) is not being satisfied. In comparison, the DDR
scheme conserves fluid area to within the precision of the VOF surface cell indicator,
oF=1×10−6.

Finally, Table II shows the computational times required to perform the translation tests.
All figures have been normalized against the time required by the H–N algorithm. As shown,
the H–N algorithm and DDR algorithm employing the Youngs interface gradient method
required a similar amount of time to complete the test. The DDR algorithm employing the
Puckett interface gradient method took a slightly longer period of time. The Puckett interface
method is more computationally expensive than the Youngs method, as the Puckett method is
iterative, requiring nine cell interface reconstructions in each cell for each interface orientation
iteration. Note that in actual fluid calculations, however, far greater computational time is
generally spent inverting the pressure field matrix than advecting the VOF function, so the
relative expense of each VOF advection technique is of only minor importance.

Table I. Error functions generated during the box translation tests.

DDR/PuckettH–N DDR/Youngs

0.539 0.190 0.216
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Figure 7. The total fluid areas calculated by the H–N and DDR algorithms during the box translation
test.

Table II. Non-dimensionalized CPU time consumed during the box transla-
tion tests.

H–N DDR/Youngs DDR/Puckett

1.31.01.0

3.2. Rotation test— the Rudman–Zalesak slotted disk

The Zalesak slotted disk test has become a benchmark test for comparison of scalar advection
algorithms. The test involves rotating a slotted disk through one complete revolution within
the computational domain under the action of a uniform vorticity velocity field. Advection
algorithm accuracy can be gauged by comparing the initial and final positions of the disk.

To allow comparison of the DDR algorithm against other VOF advection algorithms, the
form of the Zalesak test performed here is taken from Reference [3]. A computational domain
of dimensions 4×4 m2 is composed of 200×200 uniformly sized square cells. The disk has a
diameter of 1 m, and one revolution of the disk is completed in exactly 2524 time steps. This
time step corresponds to a Courant number, based on the maximum co-ordinate velocity
within the domain, of approximately 0.25. Further details of the form of the test can be found
in Reference [3].

Figure 8 shows graphical results of the Rudman–Zalesak test performed using the DDR
algorithm. These figures may be compared with figures published in Reference [3], where the
same test was performed using the H–N [1], FCT–VOF [3], SLIC [6], and Youngs [11]
algorithms. Note that an operator split implementation of the H–N algorithm was used by
Rudman [3] in these tests rather than the original multi-dimensional implementation as used in
the previous section of the present study.
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Figure 8. The Rudman–Zalesak test performed using the DDR algorithm. The initial fluid position, and
results produced using the Youngs and Puckett interface gradient calculation methods, are displayed.
Consistent with the figures shown in Reference [3], in each case three VOF contours are shown; 0.025,

0.5 and 0.975.

Comparing Figure 8 against the figures published in Reference [3] shows that the DDR
algorithm provides a similar level of accuracy to the Youngs algorithm, and a superior level of
accuracy to the piecewise constant and flux limited schemes. There is little visible difference
between the DDR results produced using the two different free surface interface calculation
methods.

Table III shows error functions calculated during the Rudman–Zalesak test using a variety
of VOF advection methods. All results, expect for those concerning the DDR algorithm, are
taken from Reference [3], and the error function is again defined by Equation (46).

As shown in Table III, the Youngs algorithm, which uses the Youngs method of free surface
gradient calculation, produces the best results in this test. The DDR algorithm, also employing
the Youngs method of free surface gradient calculation, is less accurate, but more accurate
than the piecewise constant or flux limited algorithms. The DDR algorithm employing the
Puckett method of free surface gradient calculation is slightly more accurate than the same
algorithm employing the Youngs method of free surface gradient calculation, but still less
accurate than the original Youngs algorithm.

Table III. Error functions generated during the Rudman–Zalesak slotted disk tests.

FCT–VOF YoungsSLIC DDR/Youngs DDR/PuckettH–N

3.29×10−28.38×10−2 1.09×10−2 1.56×10−2 1.50×10−29.62×10−2

All results shown, except those involving the DDR algorithm, are taken from Reference [3].
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3.3. Shear test— the Rudman 6ortex

The final advection test examined in this study employs a non-uniform vorticity velocity field,
which stretches and shears free surface interfaces as fluid is translated throughout the
computational domain. To facilitate comparison of the DDR algorithm against other VOF
advection algorithms, the form of this test is again taken from Reference [3].

A two-dimensional computational domain of dimensions p×p m2, and composed of
100×100 uniformly sized square cells, is used in the shear test. The velocity field is specified
by

u=A sin x cos y and 6= −A cos x sin y (47)

where A equals 1 for the first N computational time steps, and −1 for the second N time
steps. The initial fluid geometry is a circle of radius p/5, and a Courant number of 0.25, based
on the maximum co-ordinate velocity within the computational domain, is used.

The velocity field specified by Equation (47) is time reversed, so that after 2N computational
time steps an exact advection algorithm would return the fluid to the starting location. Thus,
advection algorithm accuracy in the shear test can again be gauged by comparing the initial
and final positions of the fluid.

Figure 9 shows graphical results for the Rudman shear test performed using the DDR
algorithm, and using four different test durations. Comparing these figures to those published
in Reference [3], the DDR algorithm appears to be more accurate than the piecewise linear or
flux limited algorithms, but less accurate than the original Youngs algorithm. The errors
generated during these tests, which are shown in Table IV and again defined by Equation (46),
generally support these observations.

It is interesting that during the longer duration tests shown in Figure 9, the ‘tail’ of the fluid
spiral tends to ‘breakup’ at intermediate test times. Breakup of the spiral occurs because the
width of the fluid form becomes comparable with the computational cell dimension. In such
cases, the interface reconstruction technique tends to arrange the small amounts of fluid in
each cell as close together as possible, causing the fluid to ‘glob’. This process can be thought
of as numerical surface tension and has been previously observed by other researches [2,17]. As
shown, its effect is most pronounced when the dimensions of the fluid region are similar to or
smaller than the dimensions of the computational cells.

Comparing the shear test results generated using the Youngs and Puckett interface gradient
schemes, the least amount of spiral breakup occurs when using the more complex Puckett
interface gradient scheme. As shown in Table IV, this is reflected in lower shear test error
functions generated under the Puckett interface gradient scheme than under Youngs interface
scheme.

In order to examine the spatial convergence rate of the DDR algorithm, the 10p s duration
shear test was repeated using four different mesh sizes. A Courant number of 0.25 was used
in all of the tests, so that the computational time step was reduced as the mesh was refined.
The error functions generated during these tests, and the associated convergence rates, are
shown in Table V. The results indicate that the average spatial convergence rate of the DDR
algorithm over all of the tests was approximately 1.4. Also, the convergence rate is dependent
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Figure 9. The Rudman shear test performed using the DDR algorithm. Results produced using the
Youngs and Puckett interface gradient calculation methods are displayed. Consistent with the figures

shown in Reference [3], in each case three VOF contours are shown; 0.025, 0.5 and 0.975.
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Table IV. Error functions generated during the Rudman shear tests.

N SLIC H–N FCT–VOF Youngs DDR/Youngs DDR/Puckett

3.16×10−34.44×10−32.61×10−31.94×10−23.24×10−22.27×10−2250
500 3.30×10−2 4.00×10−2 2.35×10−2 5.12×10−3 7.35×10−3 7.13×10−3

1000 4.59×10−2 6.66×10−2 3.14×10−2 8.60×10−3 1.25×10−2 1.19×10−2

1.09×10−19.02×10−22000 4.51×10−23.85×10−2 5.15×10−21.44×10−1

All results shown, except those involving the DDR algorithm, are taken from Reference [3].

on the method of interface gradient calculation, with the Puckett method displaying a slightly
higher rate than the Youngs method.

Examining the results of the three advection tests that have been performed in this study, it
appears that the accuracy of the DDR algorithm is significantly greater than that of the
piecewise constant and flux limited schemes, but slightly lower than that of the original
Youngs algorithm. However, the DDR algorithm does have two advantages over the Youngs
algorithm, and other comparable piecewise linear algorithms, which justifies its use in modern
multi-phase flow applications.

1. The DDR scheme rigorously conserves fluid volume, despite it containing no VOF
‘overshoot’ or ‘undershoot’ correction algorithms. This feature is a result of the defined
donating regions possessing no overlapping areas.

2. The DDR scheme produces no fluid ‘flotsam’, in spite of containing no algorithms used
to suppress such debris. This feature is a result of the defined donating region geo-
metry, which tends to fill transition region cells before depositing fluid into empty cells,
and similarly tends to empty transition region cells before removing fluid from full
cells.

Table V. Error functions and convergence rates for the 10p s duration
Rudman shear test, shown as a function of grid refinement.

Grid DDR/Youngs DDR/Puckett

Error Order Error Order

1.36×10−1502 1.48×10−1

1.711.40
1002 5.15×10−2 4.51×10−2

1.21 1.48
1.62×10−22.22×10−22002

1.161.42
7.27×10−34002 8.31×10−3
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While difficult to demonstrate using simple advection tests, it is these two features that make
the DDR scheme particularly attractive when simulating multi-phase fluid flows where
stability of the free surface interface is paramount. An example of such an application is the
simulation of volatile droplets interacting with hot solid surfaces [16], where it was found that
the DDR VOF advection algorithm produced more accurate and stable solutions than any of
the alternative VOF advection techniques.

4. CONCLUSIONS

A new VOF advection algorithm, termed the DDR scheme, has been presented. The algorithm
uses a linear piecewise free surface reconstruction method, combined with a unique fully
multi-dimensional boundary flux integration technique.

The performance of the DDR algorithm has been compared against a variety of other VOF
advection algorithms, using translation, rotation and shear flow advection tests. The DDR
algorithm has been found to be more accurate than piecewise linear and flux limited schemes,
and to be of comparable accuracy with the original Youngs algorithm.

The real advantage that the DDR scheme has over alternative advection schemes is stability.
The DDR scheme generates no fluid ‘flotsam’, despite the algorithm not including any debris
suppressing features, and conserves fluid volume rigorously. While difficult to demonstrate
using simple advection tests, these features make the scheme ideal for applications where
stability of the free surface interface is paramount.
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